Steckbrief: Zinn

Informationen zum Element:

Bezeichnung

118,71
  Sn
50

Symbol: Sn

Internationale Bezeichung (IUPAC): Tin

Ursprung: Das Metall Zinn ist möglicherweise seit 3500 v. Chr. bekannt; im südtürkischen Taurus-Gebirge wurden beispielsweise das Bergwerk Kestel und die Verarbeitungsstätte Göltepe entdeckt und auf etwa 3000 v. Chr. datiert, wo auch Zinn abgebaut worden sein könnte. Ob es sich hier um die Quelle des großen vorderasiatischen Zinnverbrauches handelte, bleibt vorläufig aber offen. So wurde seit dem 2. Jh. v. Chr. in Mittelasien an der Route der späteren Seidenstraße Zinn nachweislich in größerem Maße in Bergwerken abgebaut. Auch in einem ägyptischen Grabmal aus der 18. Dynastie (~1500 v. Chr.) wurden Gegenstände aus Zinn gefunden. Ab etwa 1800 v. Chr. ist Zinn auch während der Shang-Dynastie in China bekannt. Bereits früher dürfte es in den eigentlichen asiatischen Lagerstätten südlich davon in Yunnan und auf der Halbinsel Malakka bekanntgewesen sein.
Durch die Legierung Bronze, deren Bestandteile Kupfer und Zinn sind, gelang es zu größerer Bedeutung (Bronzezeit). Der römische Schriftsteller Plinius nannte Zinn plumbum album (weißes Blei; Blei hingegen war plumbum nigrum = schwarzes Blei). Die hohe Nachfrage nach dem in der Alchemie dem Jupiter zugeordneten Zinn wird sogar als ein Grund für die römische Besetzung Britanniens angeführt ? in der südwestlichen Region Cornwall befanden sich damals bedeutende Erzvorkommen. Im Lateinischen heißt Zinn stannum, daher rührt auch das chem. Symbol Sn. Lange nachdem Bronze durch Eisen verdrängt wurde, erlangte Zinn Mitte des 19. Jahrhunderts durch die industrielle Herstellung von Weißblech von neuem große Bedeutung.

Bedeutung: mittel-/althochdeutsch zin; verwandt mit althochdeutsch zein: Stab, Stäbchen

Daten Periodensystem

Zinn

Periode: 5

Gruppe: 14 (IV A)

Gruppenname: Kohlenstoffgruppe

Oxidationszahl: 4 (2)

Atommasse [u]: 118,71

Elektronegativität

Elektronegativität (nach Allred): 1,7

Elektronegativität (nach Pauling): 1,96

Physikalische Daten

Zinn

Aggregatzustand (20°C): fest

Dichte [g/cm2]: 7,287

Radioativ: n

Schmelztemperatur [°C]: 232,06

Siedetemperatur [°C]: 2602

Kristallstruktur: tetragonal

Verwendung im Alltag

  • Eigenschaften: Zinn kann drei Modifikationen mit verschiedener Kristallstruktur und Dichte annehmen. α-Zinn (kubisches Diamantgitter, 5,75 g/cm3) ist unterhalb von 13,2 °C stabil und besitzt einen Bandabstand von EG=0,1 eV, β-Zinn (verzerrt oktaedrisch, 7,31 g/cm3) bis 162 °C und γ-Zinn (rhombisches Gitter, 6,54 g/cm3) oberhalb von 162 °C oder unter hohem Druck. Natürliches Zinn besteht aus zehn verschiedenen stabilen Isotopen; das ist die größte Anzahl aller Elemente. Außerdem sind noch 28 radioaktive Isotope bekannt.
    Die Rekristallisation von β-Zinn zu α-Zinn bei niedrigen Temperaturen äußert sich als die so genannte Zinnpest.
    Beim Verbiegen des relativ weichen Zinns, beispielsweise von Zinnstangen, tritt ein charakteristisches Geräusch, das Zinngeschrei (auch Zinnschrei), auf. Es entsteht durch die Reibung der β-Kristallite aneinander. Das Geräusch tritt jedoch nur bei reinem Zinn auf. Bereits niedrig liegiertes Zinn zeigt diese Eigenschaft nicht, z.B. verhindern geringe Beimengungen von Blei oder auch Antimon das Zinngeschrei. Das β-Zinn hat einen abgeflachten Tetraeder als Raumzellenstruktur, aus dem sich zusätzlich zwei Verbindungen ausbilden.
    Durch die Oxidschicht, mit der Zinn sich überzieht, ist es sehr beständig. Von konzentrierten Säuren und Basen wird es allerdings unter Entwicklung von Wasserstoffgas zersetzt. Jedoch ist Zinn(IV)oxid ähnlich inert wie Titan(IV)oxid. Zinn wird von unedleren Metallen (bsw. Zink) reduziert, dabei scheidet sich elementares Zinn schwammig oder am Zink haftend ab.
  • Nachweis: Als qualitative Nachweisreaktion für Zinnsalze wird die Leuchtprobe durchgeführt: Die Lösung wird mit ca. 20%iger Salzsäure und Zinkpulver versetzt, wobei naszierender Wasserstoff frei wird. Der naszierende, atomare Wasserstoff reduziert einen Teil des Zinns bis zum Zinn(IV)-hydrid SnH4. In diese Lösung wird ein Reagenzglas eingetaucht, das mit kaltem Wasser und Kaliumpermanganatlösung gefüllt ist; das Kaliumpermanganat dient hier nur als Kontrastmittel. Diese Eprouvette wird im Dunklen in die nichtleuchtende Bunsenbrennerflamme gehalten. Bei Anwesenheit von Zinn entsteht sofort eine typisch blaue Fluoreszenz, hervorgerufen durch SnH4.
    Zur quantitativen Bestimmung von Zinn eignet sich die Polarographie. In 1 M Schwefelsäure ergibt Zinn(II) eine Stufe bei -0,46 V (gegen SCE, Reduktion zum Element). Stannat(II) lässt sich in 1 M Natronlauge zum Stannat(IV) oxidieren (-0,73 V) oder zum Element reduzieren (-1,22 V). Im Ultraspurenbereich bieten sich die Graphitrohr- und Hydridtechnik der Atomspektrometrie an. Bei der Graphitrohr-AAS werden Nachweisgrenzen von 0,2 μg/l erreicht. In der Hydridtechnik werden die Zinnverbindungen der Probelösung mittels Natriumborhydrid als gasförmiges Stannan (Zinnwasserstoff) in die Quarzküvette überführt. Dort zerfällt das Stannan bei ca. 1000 °C in die Elemente, wobei der atomare Zinndampf spezifisch die Sn-Linien einer Zinn-Hohlkathodenlampe absorbiert. Hier sind 0,5 μg/l als Nachweisgrenze angegeben worden.
  • Biologische Wirkung: Metallisches Zinn ist auch in größeren Mengen an sich ungiftig. Die Giftwirkung einfacher Zinnverbindungen und Salze ist gering. Einige organische Zinnverbindungen dagegen sind hochtoxisch. Die Trialkyl-Zinnverbindungen (insbesondere TBT, engl. Tributyltin, Tributylzinn) und Triphenylzinn werden in Anstrichfarben für Schiffe verwendet, um die sich an den Schiffsrümpfen festsetzenden Mikroorganismen und Muscheln abzutöten. Dadurch kommt es in der Umgebung von großen Hafenstädten zu hohen Konzentrationen an TBT im Meerwasser. Die toxische Wirkung beruht auf der Denaturierung einiger Proteine durch die Wechselwirkung mit dem Schwefel aus Aminosäuren wie beispielsweise Cystein.
  • Verwendung: Orgelpfeifenbau: Seit Jahrhunderten wird reines Zinnblech großflächig zur Herstellung von Orgelpfeifen im Sichtbereich verwendet. Diese behalten ihre silbrige Farbe über viele Jahrzehnte. Das weiche Metall wird aber in der Regel in einer Legierung mit Blei, dem so genannten Orgelmetall verwendet und hat für die Klangentfaltung sehr gute vibrationsdämpfende Eigenschaften. Zu tiefe Temperaturen sind wegen der Umwandlung in α-Zinn schädlich für Orgelpfeifen.
  • Verwendung: Haushaltsgegenstände: Viele Haushaltsgegenstände, Geschirre, Tuben, Dosen und auch das Kinderspielzeug Zinnfiguren wurden früher ganz aus Zinn gefertigt, rundweg der einfacheren Verarbeitungstechnologie der Zeit entsprechend. Mittlerweile jedoch wurde das relativ kostbare Material meist durch preiswertere Möglichkeiten ersetzt.
  • Verwendung: Ziergegenstände und Modeschmuck: Ziergegenstände und Modeschmuck werden weiterhin aus Zinnlegierungen, Hartzinn bzw. Britanniametall hergestellt.
  • Verwendung: Weißblech: Weißblech ist verzinntes Eisenblech, es wird beispielsweise für Konservendosen oder Backformen verwendet. Tin, das englische Wort für Zinn ist gleichzeitig ein englisches Wort für Dose bzw. Konservenbüchse.
  • Verwendung: Stanniolfolie : Zu dünner Folie gewalzt nennt man es auch Stanniol; hier ist Zinn im 20. Jahrhundert durch das viel preiswertere Aluminium verdrängt worden. Bei manchen Farbtuben und Weinflaschenverschlüssen begegnet uns Zinn noch.
  • Verwendung: Legierung: Als Legierungsbestandteil wird Zinn vielfältig verwendet, mit Kupfer zu Bronze oder anderen Werkstoffen legiert. Nordisches Gold, die Legierung der goldfarbigen Euromünzen, beinhaltet unter anderem 1 % Zinn.
    Als Bestandteil von Metall-Legierungen mit niedrigem Schmelzpunkt ist es unersetzbar. Weichlot (so genanntes Lötzinn) zur Verbindung elektronischer Bauteile (beispielsweise auf Leiterplatten) wird mit Blei (eine typische Mischung ist etwa 63 % Sn und 37 % Pb) und anderen Metallen in geringerem Anteil legiert. Die Mischung schmilzt bei etwa 183 °C. Seit Juli 2006 darf jedoch kein bleihaltiges Lötzinn in elektronischen Geräten mehr verwendet werden, man setzt nun bleifreie Zinnlegierungen mit Kupfer und Silber ein, z.B. Sn95.5Ag3.8Cu0.7 (Schmelztemperatur ca. 220 °C). Da man aber diesen Legierungen nicht traut (Zinnpest und Tin whiskers), ist bei der Fertigung elektronischer Baugruppen für Medizintechnik, Sicherheitstechnik, Messgeräte, Luft- u. Raumfahrt sowie für militärische/polizeiliche Verwendung der Einsatz bleifreien Lotes NICHT zulässig.
  • Verwendung: Elektronische Bauteile: Hochreine Zinn-Einkristalle eignen sich auch zur Herstellung von elektronischen Bauteilen.
  • Verwendung: Glasherstellung: In der Floatglasherstellung schwimmt die zähflüssige Glasmasse bis zur Erstarrung auf einer spiegelglatten flüssigen Zinnschmelze.
  • Verwendung: Stabilisator in Kunststoffen: Zinnverbindungen werden dem Kunststoff PVC als Stabilisatoren beigemischt. Tributylzinn dient als sog. Antifouling-Zusatz in Anstrichstoffen für Schiffe und verhindert den Bewuchs der Schiffskörper, es ist mittlerweile jedoch umstritten und weitgehend verboten.
  • Verwendung: LCDs: In Form einer transparenten Zinnoxid-Indiumoxid-Verbindung ist es elektrischer Leiter in Anzeigegeräten wie LC-Displays. Das reine, weiße, nicht sehr harte Zinndioxid besitzt eine hohe Lichtbrechung und wird im optischen Bereich und als mildes Poliermittel eingesetzt.
  • Verwendung: Zahnmedizin - Amalgam: In der Dentaltechnik wird Zinn auch als Bestandteil von Amalgamen zur Zahnfüllung eingesetzt.
  • Verwendung: Fungizide und Desinfektionsmittel: Die sehr toxischen organischen Zinnverbindungen finden als Fungizide oder Desinfektionsmittel Verwendung.
  • Verwendung: Bleigießen: Zinn wird anstelle von Blei auch zum Bleigießen verwendet.
  • Verwendung: Homöopathie: Stannum metallicum (metallisches Zinn) findet auch bei der Herstellung von homöopathischen Arzneimitteln sowie als Bandwurm-Gegenmittel Verwendung.
  • Verwendung: Silberfolie: Unter der Bezeichnung Argentin wurde Zinnpulver früher zur Herstellung von unechtem Silberpapier und unechter Silberfolie verwendet.
  • Berufsbezeichnung: Zinngießer: Seit dem Mittelalter ist Zinngießer ein spezieller Beruf, der sich bis heute erhalten hat ( Metall- und Glockengießer/-in).

Vorkommen und Häufigkeit

Vorkommen: Zinn lässt sich leicht aus Zinnstein (Kassiterit, ein rotbraun/schwarzes Erz auch Zinnoxid, SnO2) gewinnen. Dazu wird das Erz zuerst zerkleinert und dann durch verschiedene Verfahren (Aufschlämmen, elektrische/magnetische Scheidung) angereichert. Nach der Reduktion mit Kohlenstoff wird das Zinn knapp über seine Schmelztemperatur erhitzt, so dass es ohne höher schmelzende Verunreinigungen abfließen kann. Heute gewinnt man einen Großteil durch Recycling und hier durch Elektrolyse.
In der Erdkruste ist es mit einem Anteil von etwa 0,0035 Massenprozenten (35 ppm) vertreten.
Nach aktuellen Schätzungen reichen die vorhandenen Lagerstätten noch etwa 35 Jahre. Zinn kommt zu über 80 % als Ansammlung in Schwemmlandablagerungen (Sekundärlagerstätten) an Flüssen sowie auf dem Meeresgrund vor. Hierbei ist eine Region beginnend in Zentralchina über Thailand bis nach Indonesien bevorzugt. Das Material in den Schwemmlandlagerstätten hat nur einen Metallanteil von etwa 5 %. Erst nach verschiedenen Schritten zur Konzentrierung auf etwa 75 % wird ein Schmelzprozess eingesetzt.
Der Jahresweltverbrauch an Zinn liegt bei etwa 300.000 t. Davon werden etwa 35 % für Lote, etwa 30 % für Weißblech und etwa 30 % für Chemikalien und Pigmente eingesetzt. Durch die Umstellung der Zinn-Blei-Lote auf bleifreie Lote mit Zinnanteilen > 95 % wird der jährliche Bedarf um etwa 10 % wachsen. Die Weltmarktpreise steigen in den letzten Jahren kontinuierlich. So wurden an der LME (London Metal Exchanges) 2003 noch etwa 5000 US-Dollar pro Tonne bezahlt im Mai 2008 jedoch bereits mehr als 24.000 US-Dollar pro Tonne. Die zehn größten Zinnverbraucher (2003) weltweit sind nach China auf Platz 1 die Länder USA, Japan, Deutschland, übriges Europa, Korea, übriges Asien, Taiwan, Großbritannien und Frankreich.

    Häufigkeit: 3,00 ⋅ 10-3 % (prozentualer Massenanteil der Erdhülle, d.h. der Erdkruste/Ozeane bis 16 km Tiefe)

    Geschichte

    Entdeckung: historisch (ca. 3500 v. Chr.)

    Entdecker: ---

    Isotope

    • 112Sn (0,97 %, stabil, 62 Neutronen)
    • 114Sn (0,65 %, stabil, 64 Neutronen)
    • 115Sn (0,34 %, stabil, 65 Neutronen)
    • 116Sn (14,54 %, stabil, 66 Neutronen)
    • 117Sn (7,68 %, stabil, 67 Neutronen)
    • 118Sn (24,23 %, stabil, 68 Neutronen)
    • 119Sn (8,59 %, stabil, 69 Neutronen)
    • 120Sn (32,59 %, stabil, 70 Neutronen)
    • 122Sn (4,63 %, stabil, 72 Neutronen)
    • 124Sn (5,6 %, stabil, 74 Neutronen)

    Bilder (mit freundlicher Genehmigung von http://www.smart-elements.com):

    ZinnZinnZinnZinnZinn

    Schalenmodell nach Bohr

    Zinn

     
    hoch
    Germanium
     
     
    links
    Indium
    Zinn 
    rechts
    Antimon
     
    runter
    Blei