Steckbrief: Stickstoff

Informationen zum Element:

Bezeichnung

14,007
  N
7

Symbol: N

Internationale Bezeichung (IUPAC): Nitrogenium

Ursprung: Molekularer Stickstoff ist mit 78 % der Hauptbestandteil der Luft. Er ist für die Lebewesen ein essentielles Element, das durch Stickstofffixierung auf natürlichem Wege organisch gebunden wird. In organischer Form ist er als Baustein der Proteine ein wichtiges Hauptelement aller Organismen. Stickstoff ist ein zentrales Element im Stickstoffkreislauf der Ökosysteme und wird von den Lebewesen in einem energieintensiven Prozess organisch gebunden und verfügbar gemacht. Er kommt in Mineralien sehr selten vor. Auf der Erdoberfläche und in der Luft ist er fast ausschließlich abiotisch in der Anfangszeit der Erde entstanden und wurde später von den Lebewesen gebunden.
Das Elementsymbol N leitet sich von der lateinischen Bezeichnung nitrogenium (von altgriech. nitro = Laugensalz und altgriech. genese = Erschaffung) ab. Die deutsche Bezeichnung Stickstoff erinnert daran, dass molekularer Stickstoff Flammen löscht (erstickt) oder dass ein Lebewesen (z. B. ein Mensch) in reinem Stickstoff erstickt.
Chemische Verbindungen des Stickstoffs, wie Nitrate und Ammoniumsalze, wurden schon von Alchemisten verwendet. Carl Wilhelm Scheele wies 1771 Stickstoff als Bestandteil der Luft nach. Erstmals im Jahr 1774 wurde Ammoniak von Joseph Priestley dargestellt. Durch die Einführung des Frank-Caro-Verfahrens (Kalkstickstofferzeugung nach Adolph Frank und Nikodem Caro) wurde der Luftstickstoff erstmals Anfang des 20. Jahrhunderts nutzbar gemacht. Ebenfalls Anfang des 20. Jahrhunderts wurden weitere wichtige Verfahren großtechnisch verfügbar. Zu diesen Verfahren zählen unter anderem die Gewinnung von Salpetersäure (Birkeland-Eyde-Verfahren, nach Kristian Birkeland und Sam Eyde), die katalytische Ammoniakverbrennung nach Wilhelm Ostwald sowie die Ammoniaksynthese nach Fritz Haber und Carl Bosch.

Bedeutung: Stickstoff = erstickender Stoff, nitro = Laugensalz, genese = Erschaffung

Daten Periodensystem

Stickstoff

Periode: 2

Gruppe: 15 (V A)

Gruppenname: Stickstoffgruppe

Oxidationszahl: -3 (5, 4, 3, 2)

Atommasse [u]: 14,007

Elektronegativität

Elektronegativität (nach Allred): 3,1

Elektronegativität (nach Pauling): 3,04

Physikalische Daten

Stickstoff

Aggregatzustand (20°C): gasförmig

Dichte [g/cm2]: 0,0012506

Radioativ: n

Schmelztemperatur [°C]: ~-209,85

Siedetemperatur [°C]: ~-195,79

Kristallstruktur: hexagonal

Verwendung im Alltag

  • Stickstoffverbindungen: Stickstoff wird zur Synthese von Ammoniak (Haber-Bosch-Verfahren) und Kalkstickstoff und bei chemischen Reaktionen verwendet. Darüber hinaus finden Stickstoffverbindungen mannigfaltige Anwendungen im Bereich der organischen Chemie und dienen als Düngemittel.
    Viele Sprengstoffe sind Stickstoffverbindungen. Es handelt sich meistens um Nitro-Verbindungen. Bei ausreichend Nitro-Gruppen im Molekül können die Sauerstoffatome der Nitro-Verbindung bei ausreichender Anregung mit den Kohlenstoff- oder Wasserstoffatomen im selben Molekül exotherm reagieren und somit wird aus dem Feststoff oder der Flüssigkeit (z. B. Nitroglycerin) plötzlich ein Gas hoher Temperatur, das sich mit großer Gewalt ausdehnt. Sprengstoffe befinden sich also in einem metastabilen Zustand. Bei wenigen Nitro-Gruppen erfolgt lediglich eine schnelle und unvollständige Verbrennung (z. B. Zelluloid (Tischtennisball)).
  • Stickstoffgas: Stickstoff wird zur Füllung von Flugzeugreifen großer Flugzeuge verwendet. Der reine Stickstoff verhindert, dass Flugzeugreifen durch die große Hitzeentwicklung beim Aufsetzen während der Landung, oder beim Startlauf, von innen in Brand geraten können.
    Stickstoff dient auch als Schutzgas, u. a. beim Schweißen und als Lampen-Füllgas. Die inerten Eigenschaften des Stickstoffs sind hier von Bedeutung.
    Stickstoff findet in Getränkezapfanlagen Verwendung, wenn auf Grund von baulichen Umständen (langer Leitungsweg, großer Höhenunterschied) ein hoher Zapfdruck notwendig wird. Stickstoff wird hier zusammen mit Kohlenstoffdioxid als Mischgas verwendet. Da sich Stickstoff nicht im Getränk löst, kann auch bei höheren Drücken ohne zu viel Schaumbildung bzw. Aufcarbonisierung gezapft werden.
    Die umstrittene Füllung von Autoreifen mit Stickstoff wird im Artikel Reifengas thematisiert.
  • Flüssigstickstoff: Aufgrund des niedrigen Siedepunkts wird flüssiger Stickstoff (LIN) als Kältemedium in der Kryotechnik eingesetzt. Der Stickstoff entzieht dabei dem Kühlgut seine Verdampfungswärme und hält dieses solange kalt, bis er verdampft ist.
    Gegenüber flüssigem Sauerstoff, der bei ?183 °C (90 K) siedet, ist der Siedepunkt von LN um weitere 13 K niedriger, er siedet bei 77 K und bringt Luftsauerstoff und andere Gase zur Kondensation, die auf diese Weise getrennt werden können.
    Flüssiger Stickstoff (Dichte 807 g/l) wird unter anderem dazu verwendet, bei Hochtemperatursupraleitern den supraleitenden Zustand zu erzeugen. Er wird auch zur Lagerung biologischer und medizinischer Proben, Eizellen und Sperma, sowie zum Schockfrieren von biologischem Material verwendet. Ein Beispiel ist auch die Kühlung von Infrarot-Fotoempfängern, um deren thermisches Rauschen zu verringern oder überhaupt erst einen halbleitenden Zustand in ihnen herbeizuführen.
    In der Computer-Tuning-Szene wird Flüssigstickstoff unter anderem als Kühlmittel der CPU eingesetzt.
    Im Tiefbau dient er der Bodenvereisung.
    Im Bereich der Werkstofftechnik benutzt man Flüssigstickstoff um Restaustenit in bestimmten gehärteten Stählen zu beseitigen oder die Werkstoffe durch „Tiefkühlen“ künstlich zu altern. LIN wird auch eingesetzt um z. B. Getriebewellen soweit zu schrumpfen, dass aufgesetzte Zahnräder durch Presspassung auf der Welle halten.
    Beim Recycling von Kabeln wird der Isolierstoff durch Kühlen mit flüssigem Stickstoff spröde und kann vom Metall (Aluminium bzw. Kupfer) abgeschlagen werden.
    Ein weiteres Einsatzgebiet für flüssigen Stickstoff ist die Kryochirurgie, in der z. B. Warzen vereist werden. In diesem Fall wird flüssiger Stickstoff direkt auf die zu behandelnde Hautpartie aufgesprüht.
    In Deutschland noch weitestgehend experimentell ist die Stickstoff-Bestattung (grüne Bestattung). Als Alternative zur krematorischen Bestattung (Leichenverbrennung) wird die Leiche bei -18 °C schockgefroren und dann in ein Bad aus flüssigem Stickstoff von -196 °C gegeben. Der so erstarrte Körper wird daraufhin brüchig wie Glas. Durch Schallwellen und Erschütterung zerfällt er zu einer pulverigen Substanz. In einer Vakuumkammer wird dieser das Wasser entzogen, anschließend werden Metallteile – beispielsweise Zahnfüllungen – entfernt. Dies hat folgende Vorteile: Die sterblichen Überreste könnten nun in einem kleinen, biologisch abbaubaren Sarg-Gefäß beigesetzt werden. Zur Bestattung reicht ein flaches Grab von etwa 30 cm Tiefe, wo Sauerstoff und Bakterien den Zersetzungsprozess einleiten. Die Verrottung ist schon innerhalb eines halben Jahres abgeschlossen. Zum Vergleich: eine herkömmliche Holzsargbestattung geschieht in etwa 2 m Tiefe, der Zersetzungsprozess dauert mehrere Jahre.
    Stickstoff-Verbraucher bekommen Stickstoff oft statt in Druckgasflaschen als Flüssigstickstoff in Thermosbehältern ähnlich einer Thermosflasche bereitgestellt. Diese Behälter bezeichnet man als Dewargefäß. Der Stickstoff wird dazu flüssig aus ebenfalls doppelwandigen Tankfahrzeugen abgefüllt.

Vorkommen und Häufigkeit

Vorkommen: Schon im 19. Jahrhundert erkannte man, dass ein großer Teil der pflanzlichen Materie Stickstoff enthält und ein wichtiges Bauelement aller Lebewesen ist. Er ist das wesentliche Element der Proteine und Proteide (Eiweißstoffe) und der DNA. Stickstoff ist daher auch Baustein aller Enzyme, die den pflanzlichen, tierischen und menschlichen Stoffwechsel steuern. Stickstoff ist für jedes Leben unentbehrlich.

  • Stickstoff in der Luft: Die Lufthülle der Erde besteht zu 78,09 vol% (75,53 % Gewichtsanteil) aus molekularem Stickstoff. Lediglich eine kleine Anzahl von Mikroorganismen kann ihn nutzen, in ihre Körpersubstanz einbauen oder auch an Pflanzen abgeben. Pflanzen können, soweit bekannt, den gasförmigen Stickstoff der Luft nicht unmittelbar nutzen. Die Überführung in eine Form, die von den Pflanzen verwertbar ist, geschieht durch
    - Knöllchenbakterien: Diese sehr kleinen Lebewesen dringen in die Wurzeln der sogenannten Leguminosen ein. Sie ernähren sich von den Assimilaten der Pflanze. Im Tausch dafür liefern sie der Wirtspflanze Stickstoff, den sie selbst direkt aus der Luft aufnehmen. Diese Lebensgemeinschaft ist eine Symbiose. Sie ermöglicht den Leguminosen die Besiedelung auch schlechter Standorte, weshalb der Mensch diese Pflanzen insbesondere im ökologischen Landbau zur Anreicherung des Bodens mit Stickstoff nutzt. Hier stellen Leguminosen die Hauptstickstoffquelle dar.
    - Freilebende Mikroorganismen: Die nichtsymbiotische Stickstoffbindung beruht auf der Fähigkeit einiger freilebender Mikroorganismen (z. B. Azotobacter und Cyanobakterien), Luftstickstoff zum Aufbau von körpereigenem Eiweiß zu verwenden. Bei ackerbaulicher Nutzung wird die Größenordnung der Bindung von atmosphärischem Stickstoff durch freilebende Mikroorganismen mit 5–15 kg/ha und Jahr angenommen.
    - Elektrische Entladung bei Gewittern: In niederschlagsreichen Gebieten können jährlich 20–25 kg N/ha und Jahr durch Regenfälle dem Boden zugeführt werden. Das geschieht dadurch, dass die Kraft der elektrischen Entladung Sauerstoff und Stickstoff in der Luft zu Stickstoffoxiden verbindet, die mit dem Regenwasser letztendlich zu Salpetersäure reagieren und diese Salpetersäure im Boden zu Nitraten wird.
    - Ammoniak-Synthese: Die Chemiker Haber und Bosch haben zu Anfang des 20. Jahrhunderts ein Verfahren entwickelt, mit dem aus Luftstickstoff und Wasserstoff Ammoniak hergestellt werden kann. Die durch das Haber-Bosch-Verfahren möglich gewordene Nutzung des unerschöpflichen N-Vorrates der Atmosphäre hat in den zurückliegenden Jahrzehnten wesentlich zur Leistungssteigerung der landwirtschaftlichen Produktion beigetragen. Die Ernährungssicherung der Weltbevölkerung konnte damit wesentlich verbessert werden. Die Pflanze baut aus dem aufgenommenem Stickstoff pflanzliches Eiweiß auf, das Mensch und Tier als Nahrung und zum Aufbau des eigenen Körpereiweißes dient. Im menschlichen und tierischen Organismus wird das Eiweiß zum großen Teil wieder abgebaut und mit dem Kot und Harn ausgeschieden.
    - Autoabgase: Durch die Verbrennung fossiler Energieträger (Benzin, Diesel) werden durch den Autoverkehr Stickstoffverbindungen freigesetzt. Bei dem Verbrennungsvorgang entstehen Stickoxide (NOx, vor allem Stickstoffdioxid NO2, aber auch Stickstoffmonoxid NO und andere NOx-Verbindungen). In der Vergangenheit wurden diese direkt in die Umgebung entlassen; heutzutage besitzen die meisten Autos Katalysatoren, welche diese Verbindungen reduzieren: NOx wird im Katalysator zu Ammoniak reduziert, dieses wird im Beisein von Wasser in Ammonium umgewandelt (Ammoniak/Ammonium-Gleichgewicht in angesäuerter Lösung: NH3 + H3O+ <=> NH4+ + H2O). Sowohl die oxidierten, als auch die reduzierten Stickstoffverbindungen werden über die Luft verfrachtet und tragen zu einem beträchtlichen Teil zur Eutrophierung benachbarter Ökosysteme bei.
  • Stickstoff im Boden: In der Ackerkrume (A-Horizont) liegen meist mehr als 95 % des Gesamt-N als organisch gebundener Stickstoff in lebender Wurzelmasse, abgestorbener Pflanzenmasse, Humusstoffen und Bodenlebewesen vor. Der Rest von weniger als 5 % ist anorganischer Stickstoff in Form von Ammonium-N oder Nitrat-N und in sehr geringer Menge in Form von Nitrit-N. Der Gesamtstickstoffgehalt der Böden ist stark abhängig von deren Kohlenstoffgehalt. Er wird durch Klima und Vegetation, Bodenart, Geländegestalt und Maßnahmen des Landwirts, wie Bodenbearbeitung, beeinflusst.
  • Stickstoff in Pflanzen - Aufgaben: Stickstoff wird in die Photosyntheseprodukte eingebaut, um unter anderem Eiweiße herzustellen, und fördert so das Wachstum. Je nach Art liegt der Anteil der Trockensubstanz bei 2–6 %, oder bei durchschnittlich 1,5 %. Die Aufnahme des Stickstoffs erfolgt meist in Form von Ammonium- oder Nitrat-Salzen.
  • Stickstoff in Pflanzen - Mangelsymptome:
    - kümmerlicher Wuchs
    - blassgrüne Farbe der Blätter. Ältere werden chlorotisch und fallen vorzeitig ab.
    - zu frühes Blühen (Notblüte)
    - Vergilbungen
  • Stickstoff in Pflanzen - Überschusssymptome:
    - Mastiger Wuchs
    - Blätter dunkelgrün
    - Blüte verzögert
    - Pflanze frost- und krankheitsanfällig
    - Blattgewebe wirkt schwammig und weich

Häufigkeit: 0,03 % (prozentualer Massenanteil der Erdhülle, d.h. der Erdkruste/Ozeane bis 16 km Tiefe)

Geschichte

Entdeckung: historisch (Element: 1771)

Entdecker: Carl Wilhelm Scheele

Isotope

  • 14N (99,634 %, stabil, 7 Neutronen)
  • 15N (0,366 %, stabil, 8 Neutronen)

Bilder (mit freundlicher Genehmigung von http://www.smart-elements.com):

StickstoffStickstoffStickstoff

Schalenmodell nach Bohr

Stickstoff

 
links
Kohlenstoff
Stickstoff 
rechts
Sauerstoff
 
runter
Phosphor