Bezeichnung
Symbol: O
Internationale Bezeichung (IUPAC): Oxygen
Ursprung: Sauerstoff ist das häufigste Element auf der Erde. Sauerstoff hat das chemische Symbol O und die Ordnungszahl 8.
Elementar tritt Sauerstoff überwiegend in Form eines kovalenten Homodimers auf, also einer Verbindung aus zwei Sauerstoff-Atomen und mit der Summenformel O2, bezeichnet als molekularer Sauerstoff, Dioxygen oder Disauerstoff. Es ist ein farb- und geruchloses Gas, das in der Luft zu 20,942 % enthalten ist. Es ist für viele Verbrennungs- und Korrosionsvorgänge nötig. Fast alle Tiere und die meisten Pflanzen benötigen Sauerstoff zum Leben. Sie entnehmen ihn meistens durch Atmung aus der Luft oder durch Resorption aus Wasser (gelöster Sauerstoff). In hohen Konzentrationen dagegen ist er für die meisten Lebewesen giftig.
Die metastabile, energiereiche und reaktive allotrope Form aus drei Sauerstoffatomen (O3) wird Ozon genannt.
Atomarer Sauerstoff, das heißt Sauerstoff in Form freier, einzelner Sauerstoffatome, kommt stabil nur unter extremen Bedingungen vor, beispielsweise im Vakuum des Weltalls oder in heißen Sternatmosphären. Er spielt aber eine wichtige Rolle als reaktives Zwischenprodukt in vielen Reaktionen der Atmosphärenchemie.
Carl Wilhelm Scheele (1771) und Joseph Priestley (1774) haben unabhängig voneinander den Sauerstoff entdeckt, im Zusammenhang mit der Erforschung von Verbrennungsvorgängen.
Von der Steinzeit bis über das Mittelalter hinaus war das Feuer für den Menschen eine unerklärliche Erscheinung und wurde als Gabe des Himmels hingenommen. Sowohl die Naturphilosophen der Antike als auch die Chemiker des Mittelalters, die so genannten Alchimisten, machten sich über das Wesen des Feuers Gedanken. Sie kamen dabei zu der Ansicht, das Feuer sei ein Grundstoff (siehe Vier-Elemente-Lehre). Im 17. Jahrhundert vermuteten die Forscher einen leichten geheimnisvollen Stoff
(Phlogiston), der aus dem brennenden Stoff entweichen würde. Bei dieser Annahme blieb es, bis der deutsch-schwedische Apotheker Carl Wilhelm Scheele 1772 den Sauerstoff entdeckte. Beim Erhitzen von Braunstein (Mangandioxid) oder Kaliumpermanganat mit konzentrierter Schwefelsäure (Vitriol) erhielt er ein farbloses Gas. Da dieses Verbrennungen förderte, nannte es Scheele zuerst Feuerluft
oder Vitriolluft
. Er fand heraus, dass auch Luft aus Sauerstoff und Stickstoff (verdorbene Luft
, die Feuer erstickt) besteht. Scheele konnte sich jedoch nicht erklären, in welchem genauen Zusammenhang Verbrennung und Sauerstoff stehen. Völlig unabhängig davon konnte der Engländer Joseph Priestley zwei Jahre später durch Erhitzen von Quecksilberoxid Sauerstoffgas herstellen. Der Brite veröffentlichte seine Erkenntnisse im Jahr 1774, Scheele publizierte sein Buch Chemische Abhandlung von der Luft und dem Feuer allerdings erst 1777.
Nach der Entdeckung des Sauerstoffs war seine Bedeutung bei der Verbrennung noch nicht geklärt. Dafür sorgte erst der Franzose Antoine Lavoisier. Bei seinen Experimenten fand er heraus, dass es sich bei der Verbrennung einer Substanz um ihre Reaktion mit Sauerstoff handeln müsse, denn er konnte durch Wägung nachweisen, dass ein Stoff nach seiner Verbrennung nicht leichter, sondern schwerer war. Dafür kam als Ursache nur das zusätzliche Gewicht des während des Verbrennungsprozesses aufgenommenen Sauerstoffs in Frage. Diese heute selbstverständliche Definition der Verbrennung war daher ein fundamentales Forschungsergebnis nach langer Zeit des Unwissens und mystischer Spekulationen.
Früher wurde der Sauerstoff für die Bildung von Säuren verantwortlich gemacht. Aus diesem Grund wurde der Begriff Oxygenium (Säurebildner) 1779 von Lavoisier für Sauerstoff vorgeschlagen. Tatsächlich entstehen die meisten anorganischen Säuren bei der Lösung von Nichtmetalloxiden in Wasser, welches aus den Elementen Wasserstoff und Sauerstoff besteht. Die Halogene Chlor und Brom hielt man daher lange Zeit für Oxide unbekannter Elemente. Dass aber nicht der Sauerstoff, sondern der Wasserstoff für den Säurecharakter verantwortlich ist, erkannte man erst später.
Bedeutung: Sauerstoff = Säurebildner; oxys = scharf, spitz, sauer und gen = erzeugen
Elektronegativität
Elektronegativität (nach Allred): 3,5
Elektronegativität (nach Pauling): 3,44
Physikalische Daten
Aggregatzustand (20°C): gasförmig
Dichte [g/cm2]: 0,001429
Radioativ: n
Schmelztemperatur [°C]: ~-222,65
Siedetemperatur [°C]: ~-182,95
Kristallstruktur: kubisch
Verwendung im Alltag
Sauerstoff wird für industrielle Verbrennungs-, Oxidations- und Heizprozesse, in der Medizin und in Luft- und Raumfahrt verwendet.
- Medizin: Verletzungen und viele Erkrankungen der Lunge sowie einige Herzkrankheiten und insbesondere Schockzustände können zu einem Sauerstoffmangel (Hypoxie) in den Schlagadern (Arterien) und im Gewebe lebenswichtiger Organe führen. Aus diesem Grund wird Patienten in der Notfall- und Intensivmedizin sehr häufig zusätzlicher Sauerstoff verabreicht. Bei selbstständig atmenden Patienten wird die Umgebungsluft mit Hilfe verschiedener Sonden und Masken mit Sauerstoff angereichert, bei künstlich beatmeten Patienten wird der Sauerstoff im Beatmungsgerät zugemischt. Der Effekt der Sauerstoffanreicherung im Blut ist mit Hilfe der Pulsoxymetrie oder anhand von Blutgasanalysen messbar.
- Technik: Industriell verwendet wird Sauerstoff hauptsächlich in der Metallurgie zur Herstellung von Roheisen und Stahl, sowie bei der Kupfer-Raffination. Reiner Sauerstoff oder sauerstoffangereicherte Luft dient hier einerseits zum Erreichen hoher Temperaturen, andererseits zum Frischen des Rohstahls, d. h. zum Entfernen unerwünschter Beimengungen aus Kohlenstoff, Silicium, Mangan und Phosphor, die oxidiert und abgetrennt werden. In chemischen Prozessen wird Sauerstoff meist zur Oxidation von verschiedenen Grundstoffen, wie bei der Olefin-Oxidation von Ethen zu Ethylenoxid und bei der teilweisen (partiellen) Oxidation von Schweröl und Kohle verwendet. Benötigt wird Sauerstoff außerdem zur Erzeugung von Wasserstoff- und Synthesegas und der Herstellung von Schwefel- und Salpetersäure. Weitere durch Oxidation mit Sauerstoff hergestellte wichtige Produkte sind Acetylen, Acetaldehyd, Essigsäure, Vinylacetat und Chlor. In der Glasindustrie sowie beim Schweißen und Schneiden von Beton dient der Sauerstoff zum Erreichen von notwendigen hohen Temperaturen.
Sauerstoff wird ebenso verwendet zur Darstellung von Ozon, als Oxidationsmittel in Brennstoffzellen und in der Halbleitertechnik. In der Raketentechnik wird flüssiger Sauerstoff als Oxidationsmittel verwendet und mit LOX (liquid oxygen) abgekürzt.
In der Umwelttechnik werden Abwässer durch Einleitung von Sauerstoffgas schneller durch Bakterien von organischen Schadstoffen und Giften befreit.
- Wellness: In der Wellness- und Lebensmittelindustrie wird in letzter Zeit verstärkt für Produkte geworben, die mit Sauerstoff angereichert sind. Zum Beispiel wird Wasser verkauft, das einen erhöhten Sauerstoffgehalt haben soll. Allerdings ist es umstritten, dass derartige Produkte eine positive Wirkung auf das Wohlbefinden haben können. Sauerstoff löst sich nur in geringen Mengen in Flüssigkeiten und wird über den Magen weitaus schlechter aufgenommen als über die Lunge.
- Biologische Bedeutung: Sauerstoff befindet sich in der Natur in einem steten Kreislauf. Er wird ständig von autotrophen Lebewesen wie Cyanobakterien (veraltet: Blaualgen), Algen und Pflanzen bei der oxygenen Photosynthese durch Photolyse aus Wasser freigesetzt. Er ist ein Endprodukt dieser biochemischen Reaktion und wird an die Umwelt abgegeben. Cyanobakterien waren wahrscheinlich die ersten Organismen, die molekularen Sauerstoff als Abfallprodukt in der Atmosphäre anreicherten. Zuvor existierte eine praktisch sauerstofffreie, anaerobe Atmosphäre auf der Erde. Die meisten heterotrophen Organismen, darunter alle tierischen Eukaryoten einschließlich des Menschen und viele Bakterien, benötigen diesen Sauerstoff zur Energiegewinnung durch Oxidation von organischen Stoffen. Der Sauerstoff wird dabei in der Atmungskette wieder zu Wasser reduziert. Bei Eukaryoten findet diese Reaktion in den Mitochondrien statt. Viele chemolithotrophe Bakterien nutzen Sauerstoff zur Energiegewinnung durch Oxidation von anorganischen Stoffen.
Da Sauerstoff und einige seiner Verbindungen sehr reaktiv sind und Zellstrukturen zerstören können, besitzen Organismen Schutzenzyme wie Katalase und Peroxidase. Für Organismen, denen diese Enzyme fehlen, wirkt Sauerstoff toxisch. Beim Abbau des Sauerstoffs entstehen reaktive Sauerstoffspezies, wie freie Radikale, die ebenfalls biologische Moleküle zerstören können. Werden sie nicht schnell genug abgefangen, entsteht sogenannter oxidativer Stress, der für Alterungsprozesse verantwortlich gemacht wird.
In den Phagozyten (Fresszellen) des Immunsystems dienen diese reaktiven Sauerstoffspezies (Wasserstoffperoxid und Hyperoxidionen) neben Enzymen dazu, aufgenommene Krankheitserreger zu zerstören.
- Nachweis und Konzentrationsmessung: Zur genaueren Bestimmung der Sauerstoffkonzentration eines Gases finden unterschiedliche Messverfahren Anwendung, die von dem zu erfassenden Konzentrationsbereich und den begleitenden Substanzen abhängen. Man kann physikalische und chemische Messverfahren unterscheiden.
- Glimmspanprobe: Sauerstoff kann dadurch nachgewiesen werden, dass er Verbrennungen unterhält. Am einfachsten ist die Nachweisreaktion über die so genannte Glimmspanprobe, bei der ein leicht glühender Holzspan in das zu untersuchende Gasgemisch gehalten wird, ein Aufleuchten weist auf hohe Sauerstoffkonzentrationen hin.
- Paramagnetisches Verfahren: Zu den physikalischen Messverfahren zählt das paramagnetische Verfahren (Magnos). Es geht von der Tatsache aus, dass die Sauerstoffmoleküle auf Grund ihres permanenten magnetischen Dipolmoments paramagnetisch sind, alle anderen Gase mit geringen Ausnahmen diamagnetisch sind. Bei der messtechnischen Realisierung in so genannten thermomagnetischen Geräten wird das Messgas der Wirkung eines Magnetfeldes und anschließend in einem Teilstrom einem Temperaturfeld ausgesetzt. Es entsteht in der Messzelle eine Gasströmung, der so genannte magnetische Wind
. Die Geräte können auch in explosionsgefährdeten Bereichen eingesetzt werden.
Alternativ wird ein hantelförmiger Probenkörper in einem starken magnetischen Feldgradienten platziert und mit einer Drehmoment-Messeinrichtung gekoppelt. So wird das Drehmoment, das der Sauerstoff auf den Probenkörper ausübt, durch einen schwachen Strom kompensiert, der durch eine mit dem Probenkörper verbundene Spule fließt. Der Kompensationsstrom wird von der Elektronik des Sensors so reguliert, dass der Probenkörper seine Position beibehält. Die dazu nötige Stromstärke ist direkt von dem Sauerstoffgehalt in der Sensorzelle abhängig.
- Elektrochemische Verfahren: Ein weit verbreitetes elektrochemisches Messverfahren nutzt die Sauerstoffleitfähigkeit von Zirkondioxid aus. Dabei wird das sauerstoffhaltige Messgas beispielsweise durch ein auf über 700 °C erhitztes Zirkondioxid-Röhrchen geleitet, das innen und außen Elektroden trägt und außen der Umgebungsluft ausgesetzt ist. Dadurch entsteht an den Elektroden eine elektrische Spannung, die nach dem Nernstschen Gesetz von der absoluten Elektrodentemperatur und dem Verhältnis der Sauerstoffpartialdrücke an den beiden Elektroden abhängt. Der Sauerstoffpartialdruck der Luft dient hierbei als Vergleichsgröße.
Bevorzugte Anwendungen sind Rauchgasmesssonden und die in den Kraftfahrzeugen verwendeten Lambda-Sonden.
Mit Hilfe von Zirkondioxidsensoren können ohne Probleme einerseits Sauerstoffpartialdrücke im ppm-Bereich und andererseits bei hohen Temperaturen (ca. 1.500 °C) gemessen werden.
Zur Sauerstoffbestimmung in wässrigen Phasen kommen Sensoren nach dem Prinzip der Clark-Sauerstoffelektrode oder nach dem Reflexionsprinzip mit einem faseroptischen Sensor zum Einsatz.
- Nasschemische Verfahren: Zu den chemisch-analytischen Bestimmungsverfahren zählt die Sauerstoffbestimmung nach Winkler. Hier wird die Oxidierbarkeit von Mangan(II)-Salzen durch Sauerstoff bis hin zum vier- und siebenwertigen Mangan genutzt, um die Sauerstoffmenge in der Probe zu bestimmen. Sauerstoff-abgebende Oxidationsmittel wie Kaliumpermanganat und Kaliumdichromat dienen umgekehrt zur Bestimmung des chemischen Sauerstoffbedarfs (CSB) in Gewässeranalytik und Wassergütebestimmung.
Vorkommen und Häufigkeit
Vorkommen:
- Auf der Erde: Sauerstoff ist das häufigste und am weitesten verbreitete Element auf der Erde. Es kommt sowohl in der Atmosphäre, als auch in der Lithosphäre, der Hydrosphäre und der Biosphäre vor. Sauerstoff hat einen Massenanteil von 50,5 % an der Erdhülle (bis 16 km Tiefe, einschließlich Hydro- und Atmosphäre). An der Luft beträgt sein Massenanteil 23,16 % (Volumenanteil: 20,95 %), an Wasser 88,8 % (Meerwasser: 86 %, da dort größere Mengen Ionen gelöst sind).
In elementarem Zustand wird Sauerstoff in Form von O2 in der Atmosphäre und in Gewässern gelöst gefunden. Dabei hält sich der relativ reaktionsfreudige Sauerstoff auf Dauer nur in Form eines Fließgleichgewichtes, da Sauerstoff produzierende Pflanzen immer soviel nachliefern, wie ständig von atmenden Lebewesen wieder verbraucht wird. Ohne diesen biologischen Kreislauf würde er nur in Verbindungen vorkommen. Die Entwicklung der Sauerstoffkonzentrationen in der Erdatmosphäre wird im Artikel Entwicklung der Erdatmosphäre beschrieben. In geringen Mengen ist das Sauerstoff-Allotrop O3 (Ozon) in der Atmosphäre vorhanden.
In Verbindungen kommt Sauerstoff überall auf der Erde vor. In der Erdhülle sind fast alle Minerale und damit Gesteine sauerstoffhaltig. Zu den wichtigsten zählen dabei Silicate (Silicium-Sauerstoff-Verbindungen, wie Feldspäte, Glimmer und Olivine), Carbonate, beispielsweise Calciumcarbonat in Kalkstein und Oxide wie Siliciumdioxid (Quarz).
- Im Weltraum: Im Weltall ist Sauerstoff nach Wasserstoff und Helium das dritthäufigste Element. Der Massenanteil von Sauerstoff beträgt im Sonnensystem etwa 0,8 % (dies entspricht einem Anzahlanteil von etwa 500 ppm).
Sauerstoff ist nicht in der primordialen Nukleosynthese entstanden, entsteht aber in verhältnismäßig großen Mengen in Riesensternen durch Heliumbrennen. Dabei wird zunächst aus drei Heliumkernen 12C gebildet (Drei-Alpha-Prozess), das anschließend mit einem weiteren Heliumkern zu 16O fusioniert. 18O wird durch Fusion eines 4He- mit einem 14N-Kern gebildet. Auch in so genannten Hauptreihensternen wie der Sonne spielt Sauerstoff bei der Energiegewinnung eine Rolle. Beim CNO-Zyklus (Bethe-Weizsäcker-Zyklus) stellt Sauerstoff ein Zwischenprodukt der Kernreaktion dar, bei der durch Protoneneinfang eines 12C-Kerns, der als Katalysator wirkt, ein 4He-Kern (Alpha-Teilchen) entsteht. In extrem schweren Sternen kommt es in der Spätphase ihrer Entwicklung zum Sauerstoffbrennen, bei dem der Sauerstoff als nuklearer Brennstoff für Reaktionen dient, die zum Aufbau noch schwererer Kerne führen.
Die meisten Weißen Zwerge, die nach Stand der Theorie den Endzustand 97 % aller Sterne darstellen, bestehen neben Helium und Kohlenstoff zu einem großen Teil aus Sauerstoff.
Häufigkeit: 49,4 % (prozentualer Massenanteil der Erdhülle, d.h. der Erdkruste/Ozeane bis 16 km Tiefe)